Theoretical Physics – Group Struckmeier
Publications
Current Publications
- J. Struckmeier, A. van de Venn, D. Vasak, Identity for scalar-valued functions of tensors and its applications to energy-momentum tensors in classical field theories and gravity, Astron.Nachr. 344 (2023) 6
- Johannes Kirsch, David Vasak, Armin van de Venn, Jürgen Struckmeier, "Torsion driving cosmic expansion", Eur.Phys.J.C 83 (2023) 5, 425, arXiv:2303.01165 [gr-qc]
- A. van de Venn, D. Vasak, J. Kirsch, J. Struckmeier: "Torsional dark energy in quadratic gauge gravity", Eur.Phys.J.C 83 (2023) 4, 288
- D. Benisty, D. Vasak, J. Kirsch, and J. Struckmeier, "Low-redshift constraints on covariant canonical Gauge theory of gravity", Eur.Phys.J.C 81 (2021) 2, 125
- D. Benisty, E.I. Guendelman, A. van de Venn, D. Vasak, J. Struckmeier, H. Stoecker: "The dark side of Torsion: Dark Energy from propagating torsion", Eur.Phys.J.C 82, 264 (2022)
- D. Benisty, A. van de Venn, D. Vasak, J. Struckmeier, H. Stoecker, "Torsional dark energy", Int.J.Mod.Phys.D, Vol. 31, No.14, 2242013 (2022)
- D. Vasak, J, Kirsch, J. Struckmeier, H. Stoecker, "On the cosmological constant in the deformed Einstein-Cartan gauge gravity in De Donder-Weyl Hamiltonian formulation", Astron.Nachr., DOI:10.1002/asna.20220069 (2022), arXiv:2209.00501 [gr-qc]
- D. Benisty, D. Vasak, J. Kirsch and J. Struckmeier, “Low-redshift constraints on covariant canonical Gauge theory of gravity,” Eur.Phys.J.C 81, no. 2, 125 (2021)
- J. Struckmeier, D. Vasak, "Covariant canonical gauge theory of gravitation for fermions", Astron.Nachr. 342 (2021) 5, 745-764
- D. Vasak, J. Kirsch and J. Struckmeier, "Rigorous derivation of dark energy and inflation as geometry effects in Covariant Canonical Gauge Gravity", Astron.Nachr. 342 (2021) 1-2, 81-88
- Johannes Münch, Jürgen Struckmeier, David Vasak, "Vanishing torsion coupling of the Maxwell field in canonical gauge theory of gravity", 2020, arXiv:2004.07487 [gr-qc]
- David Vasak, Johannes Kirsch, Jürgen Struckmeier, "Dark energy and inflation invoked in CCGG by locally contorted space-time", Eur.Phys.J.Plus 135 (2020) 6, 404, arXiv:1910.01088 [gr-qc]
- Jürgen Struckmeier, David Vasak, Johannes Kirsch, "Generic Theory of Geometrodynamics from Noether’s Theorem for the Diff(M)Diff(M) Symmetry Group", 2018, arXiv:1807.03000 [gr-qc]
- J. Struckmeier, J. Muench, D. Vasak, J. Kirsch, M. Hanauske, H. Stöcker, "Canonical Transformation Path to Gauge Theories of Gravity", Phys.Rev.D 95 (2017) 12, 124048, arXiv:1704.07246 [gr-qc]
- D. Kehm, J. Kirsch, J. Struckmeier, D. Vasak, M. Hanauske, "Violation of Birkhoff's theorem for pure quadratic gravity action", Astron.Nachr. 338 (2017) 9-10, 1015-1018
2017
Canonical Transformation Path to Gauge Theories of Gravity (PDF), Phys. Rev. D 95, 124048 (2017)
2016
Covariant Hamiltonian representation of Noether's theorem and its application to SU(N) gauge theories (PDF), New Horizons in Fundamental Physics, FIAS Interdisciplinary Science Series, Springer 2017
2015
General Relativity from a Canonical Transformation Formalism (Paper), Astron. Nachrichten 336, No. 8/9, 731 - 738 (2015)
General relativity as an extended canonical gauge theory (PDF), Phys. Rev. D 91, 085030 (2015)
2012
Generalized U(N) gauge transformations in the realm of the extended covariant Hamilton formalism of field theory (PDF, PS), J. Phys. G: Nucl. Part. Phys. 40 (2013) 015007
General U(N) gauge transformations in the realm of covariant Hamiltonian field theory (PDF, PS), in "Exciting Interdisciplinary Physics", W. Greiner (ed.), Springer (2013)
2011
Ultimate generalization of Noether's theorem in the realm of Hamiltonian point dynamics (PDF), Symposium "Symmetries in Science XV", Bregenz, Austria, 31 July - 05 August 2011, J. Phys. Conf. Series 380 (2012) 012007
2009
Extended Hamilton-Lagrange formalism and its application to Feynman's path integral for relativistic quantum physics (PDF, PS), Int. J. Mod. Phys. E, Vol. 18 (2009) p.79-108
2008
Covariant Hamiltonian Field Theory (PDF, PS), Int. J. Mod. Phys. E 17 (2008) (revised version)
2006
Energy-second-moment map analysis as an approach to quantify the irregularity of Hamiltonian systems (PDF, PS), Phys. Rev. E 74, 026209 (2006)
2005
Hamiltonian dynamics on the symplectic extended phase space for autonomous and non-autonomous systems (PDF, PS), J. Phys. A: Math. Gen. 38 1257-1278 (2005)
2002
Habilitationsschrift Hamiltonian systems of charged particles in discrete and continuous description (mainly in English; PDF, PS), angenommen vom Fachbereich Physik der Universität Frankfurt am Main im Oktober 2002
Noether's theorem and Lie symmetries for time-dependent Hamilton-Lagrange systems (PDF, PS), Phys. Rev. E 66, 066605 (2002)
Canonical transformations and exact invariants for time-dependent Hamiltonian systems (PDF, PS), Annalen der Physik (Leipzig) 11, 15 (2002)
2001
Invariants for time-dependent Hamiltonian systems (PDF, PS), Phys. Rev. E 64, 026503 (2001)
2000 and earlier
Exact Invariants for a Class of Three-Dimensional Time-Dependent Classical Hamiltonians (PDF, PS), Physical Review Letters 85, 3830 (2000)
Stochastic effects in real and simulated charged particle beams (PDF, PS), Phys. Rev. ST-AB 3, 034202 (2000)
Concept of entropy in the realm of charged particle beams (PDF, PS), Phys. Rev. E 54, 830 (1996)
Improved envelope and emittance description of particle beams using the Fokker-Planck approach (PDF, PS), Part. Acc. 45, 229 (1994)
The problem of self-consistent particle phase space distributions for periodic focusing channels (PDF, PS), Part. Acc. 39, 219 (1992)
Dissertation Selbstkonsistente und nichtselbstkonsistente Phasenraumverteilungen intensiver Ionenstrahlen (PhD thesis, in German; PDF), GSI Report 85-14 (1985)
On the stability and emittance growth of different particle phase-space distributions in a long magnetic quadrupole channel (PDF), Part. Acc. 15, 47 (1984)
Theoretical studies of envelope oscillations and instabilities of mismatched intense charged-particle beams in periodic focusing channels (PDF), Part. Acc. 14, 227 (1984)