Theoretische Physik – Gruppe Zhou
Publikationen
Sunda-arc seismicity: continuing increase of high-magnitude earthquakes since 2004
N Srivastava, OE Sayed, M Chakraborty, J Köhler, J Steinheimer, J Faber, ...
arXiv preprint arXiv:2108.06557
Learning Langevin dynamics with QCD phase transition
Lingxiao Wang, Lijia Jiang, Kai Zhou
Contribution to: SQM2021 • e-Print: 2108.03987 [nucl-th]
Finding signatures of the nuclear symmetry energy in heavy-ion collisions with deep learning
Y Wang, F Li, Q Li, H Lü, K Zhou
arXiv preprint arXiv:2107.11012
Deep learning stochastic processes with QCD phase transition
Lijia Jiang, Lingxiao Wang, Kai Zhou
Published in: Phys.Rev.D 103 (2021) 11, 116023 • e-Print: 2103.04090 [nucl-th]
An equation-of-state-meter for CBM using PointNet
MO Kuttan, K Zhou, J Steinheimer, A Redelbach, H Stoecker
arXiv preprint arXiv:2107.05590
Shared Data and Algorithms for Deep Learning in Fundamental Physics
L Benato, E , Buhmann, M Erdmann, P Fackeldey, J Glombitza, ...
arXiv preprint arXiv:2107.00656
Machine learning based approach to fluid dynamics
K Taradiy, K Zhou, J Steinheimer, R V.Poberezhnyuk, V Vovchenko, ...
arXiv preprint arXiv:2106.02841
Detecting Chiral Magnetic Effect via Deep Learning
Y Zhao, L Wang, K Zhou, X Huang
arXiv preprint arXiv:2105.13761
Heavy Quark Potential in QGP: DNN meets LQCD
S Shi, K Zhou, J Zhao, S Mukherjee, P Zhuang
arXiv preprint arXiv:2105.07862
Unsupervised outlier detection in heavy-ion collisions
P Thaprasop, K Zhou, J Steinheimer, C Herold
Physica Scripta 96 (6), 064003
Deep learning stochastic processes with QCD phase transition
LJ Jiang, LX Wang, K Zhou
arXiv preprint arXiv:2103.04090
Deep Learning Based Impact Parameter Determination for the CBM Experiment
MO Kuttan, J Steinheimer, K Zhou, A Redelbach, H Stoecker
Particles 4 (1), 47-52
A fast centrality-meter for heavy-ion collisions at the CBM experiment
MO Kuttan, J Steinheimer, K Zhou, A Redelbach, H Stoecker
Physics Letters B 811, 135872
Machine learning spatio-temporal epidemiological model to evaluate Germany-county-level COVID-19 risk
LX Wang, T Xu, TH Stoecker, H Stoecker, Y Jiang, K Zhou
Mach. Learn.: Sci. Technol. 2 (2021) 035031, arXiv preprint arXiv:2012.00082
Neural Network Statistical Mechanics
L Wang, Y Jiang, K Zhou
arXiv preprint arXiv:2007.01037
Heavy flavors under extreme conditions in high energy nuclear collisions
J Zhao, K Zhou, S Chen, P Zhuang
Prog.Part.Nucl. Phys. 114 (2020) 103801
Identifying the nature of the QCD transition in relativistic collision of heavy nuclei with deep learning
Yi-Lun Du, Kai Zhou, Jan Steinheimer, Long-Gang Pang, Anton Motornenko et al.
Eur.Phys.J.C 80 (2020) 6, 516
A machine learning study to identify spinodal clumping in high energy nuclear collisions
Jan Steinheimer, Longgang Pang, Kai Zhou, Volker Koch, Jørgen Randrup et al.
JHEP 12 (2019) 122
Recognizing the topological phase transition by Variational Autoregressive Networks
LX Wang, Y Jiang, LY He, K Zhou
arXiv preprint arXiv:2005.04857
Regressive and generative neural networks for scalar field theory
Kai Zhou, Gergely Endrődi, Long-Gang Pang, Horst Stöcker
Phys.Rev.D 100 (2019) 1, 011501
An equation-of-state-meter of quantum chromodynamics transition from deep learning
Long-Gang Pang, Kai Zhou, Nan Su, Hannah Petersen, Horst Stöcker, Xin-nian Wang
Nature Commun. 9 (2018) 1, 210